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Generalized Kelvin equation and the water content of a cloud
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The thermodynamics of a system of droplets immersed in a saturated vapor (an emulsion without sur-
factant) is studied here. The relevant variables used to describe this phenomenon are the temperature,
pressure, surface tension, and molar number of each phase; that is, the Gibbs free energy

G(p(r),T,o,n§,.

-
..,n& ni,. .

Lnbinlng,...,ng;) of the system. From the variation of G around the

equilibrium, two equations of state were obtained simultaneously, one for a curved and another for a
plane interface. The obtained equation for the curved surface is compared with the Kelvin equation and
with molecular dynamic data. The equation predicts the liquid-water content of a cloud.

PACS number(s): 64.70.—p, 68.10.—m, 92.60.Nv

L. INTRODUCTION

A study of equations of pure liquids, relating vapor
pressure to temperature on the vapor+liquid equilibrium
system has recently been done [1]. For droplets consist-
ing of a mixture of several components in the presence of
vapor the Kelvin equation predicts, in many situations
[2,3], the equilibrium vapor pressure. Also this equation
is of fundamental importance to an understanding of pro-
cesses such as the evaporation-condensation (homogene-
ous nucleation theory) growth of crystals, capillary con-
densation, formation of clouds, embryonic formation of
droplets [4,5], etc. The derivation of this equation is usu-
ally done without taking into account the molar number
of each phase. With a droplet grows, a certain amount of
gas is transformed into liquid. To describe this fact an
appropriate choice of the specific variables to character-
ize the thermodynamic state is of crucial importance. It
will be shown below that for a system of droplets with
several components in equilibrium with the vapor, the
pertinent function to be considered is the Gibbs free ener-
gy, which depends on the temperature, pressure, interfa-
cial tension, and molar number of each component of the
gas, the liquid, and the interfacial phase. From the varia-
tion of this function around the equilibrium state, two va-
por pressure equations are found, one for a curved sur-
face and another for a plane surface. By comparing the
former equation with the Kelvin equation it turns out
that the number of gas and liquid particles are equal. For
droplets having a small-radius, embryonic state of forma-
tion, the gas-liquid particle relation is 3 to 1. The same
result, on average, is found by using data from a molecu-
lar dynamic experiment [6]. However, by knowing the
size of droplets in a cloud, the equation predicts its
liquid-water content.

II. DROPS IN EQUILIBRIUM
WITH A SATURATED VAPOR

Let us consider, in the case of a mixture of several
fluids, a system of liquid droplets immersed in a saturated
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vapor phase. A thermodynamic description is done by
using the Gibbs free energy G of the system. This func-
tion depends on the temperature 7, the pressure p, the in-
terfacial tension o, and n§,...,n& nl,...,nk
n{,...,nJ, the molar number of the gas, the liquid, and
the interface, respectively. The variation of this quantity
[2] is given by

dG =—SdT +V&pé+V'dp'— Ado

+ 3 [pdnf+pldn!+pgdn?], (1
i=1,2

where n and uf are the molar number and the chemical
potential of component i and phase «a (the gas, liquid, and
interface, respectively). A is the interfacial area, and u$,
u! and u¢ are the chemical potential of the component i
in the gas the liquid, and the interface, respectively. At
equilibrium this variation is null, dG=0. With the condi-
tion of physicochemical equilibrium,

pi=pf=u7 , 2
and considering a constant temperature of the system,
Eq. (1) reduces to
Vedps+Vidp'— Ado+ 3 [uS(dnf+dn}+dn?)]=0.

i=1,2
(3)
The pressure in the gas phase is nearly constant. By us-

ing the Laplace equation p'—p&=20 /r after the integra-
tion of Eq. (3), we obtain

> [p?(n§+nil+n,-")]=%aA . 4)
i=1,2
The chemical potential of each component in the gas
pfis [7]
ps=pl(T)+RT Inx;p , 5)
where ,uj( T) is the chemical potential of the gas at unit

pressure and depends only on the temperature 7, the par-
tial pressure of the component i in the gas phase p, =x;p
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(p=3i=1,2%p;), with x; the mole fraction x;=nf/
>, nf. The substitution of Eq. (5) into (4) gives

ln—L= 1 4o0v
Po (1+NE&/N'4+N°/N!) rRT’

where N2/N'=3,_,,(nf/np, N°/N'=3,_,,(n?/
nl), v =V /N'with v =?1rr3 (vapor pressure of a mixture
for a plane surface). The quantity Inp ., indicates the va-
por pressure of a mixture for a plane surface and is given
by

(6)

=_ ¥ 4+ n8+4ne
Inp WRT izzl’zy,(T)(n,-f-n, +nf)
~ L' s (l+nf+n?inx, , 7
i=1,2
where n =3, ,(n}+nf+n?), and pJ(T) is [1]
dT, T
+ _ _ _ T 1 1
pl(T)= |h(0)=C,(OTInT — [ T [, ¢y,

—JRT| , ®)

i

with A(0) the enthalpy of the respective component extra-
polated to absolute zero, Cp(O) the contribution of the
molar heat capacity at constant pressure, j a chemical
constant, and C(T,) the molar specific heat of vibration.
Equation (6) predicts the vapor pressure of drops as a
function of temperature T, vapor pressure of a mixture,
plane surface pressure p, the interfacial tension o, the
specific volume of a drop v, the radius 7, and n§, ..., n%;
nll, e ,nc’; n{,...,nZ, the molar number of the gas, the
liquid, and the interface, respectively. It will be shown
below that this equation can be seen as a generalization of
the Kelvin equation.

III. EXPERIMENTS AND THE PRESENT
EQUATION

Before testing Eq. (6) with the experiments, let us write
the Kelvin equation for a saturated vapor,

20v
In-£—=29Y
npw rRT ©)

A quantitative experimental test of this equation has been
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carried out by Thoma and La Mer and Gruen (see Defay
and Prigogine [2]). These experiments provide the validi-
ty of the Kelvin equation for droplets down to 107> cm
in radius. For these droplets it is acceptable to consider
that, away from the critical point, the molar number of
the interface is unimportant with respect to the molar
number of the liquid droplet; that is,

N7 <<N". (10)
In such a situation Eq. (6) reduces to
mB—— L1 __ dov (1)
Po (1+N&/N') rRT
Equation (11) is the Kelvin equation if
Ne=N'. (12)

This orthobaric relation tell us that the liquid and vapor
are equally distributed, when liquid droplets of 107> cm
in radius coexist with a saturated vapor.

In the case of the embryonic formation of droplets, Is-
raelachvili showed that an almost linear relation between
—In(p/p. ) and —1/r holds for condensing cyclohexane
onto mica surfaces. In this case the vapor pressure equa-
tion is

In-2-=-9Y_

> RT (13)

The validity of this relation goes down to radii of r=4
nm. If in this case it is valid to assume that the molar
number of the interface is of the same order of the liquid
phase, then

N°~N'!. (14)

By comparing Egs. (13) and (6) and using Eq. (14), it re-
sults in

N&=2N! (15)

in the embryonic state of formation, the molar number of
the gas phase is twice that of the liquid phase.

Finally let us test the Kelvin equations, Eq. (9), and the
alternative equation proposed here, Eq. (11), with molec-
ular dynamic data [6] for noninteracting drops. Here we
use Eq. (11) instead of (6) because in the experiment, the
equimolecular dividing radius is calculated by using the
condition of null adsorption. The data are presented in
Table 1.

TABLE I. The reduced temperature T*(=kT/€)=0.9, the pressure p % (=po3/€)=0.0312, o is
the length scale, and € is the energy scale. R*(=R, /o) is the reduced equimolar radius. N denotes the
number of particles. Equations (9) and (11) in reduced units are Ap* /(T*n*') and $7Ap*R.**/(T*N).

N R*(radi) n*!dens) N'liq) N%gas) N*/N' Ap* In(p**/p%) Eq. (9) Eq. (11
2299  5.63 0677 562 1737 3.1 00384  0.208 0.094  0.041

5165  6.87 0.678 921 4244 46 00373 0179 0082  0.029

9322 717 0.683 1055 8267 7.8 00379  0.194 0098  0.022

6131 873 0.677 1888 4243 23 00361  0.146 0.077  0.042

8642  9.08 0678 2127 6515 31 00353 0123 0.080  0.040

9295  10.15 0.676 2962 6333 2.1 00349  0.112 0.069  0.044
10420  11.53 0.677 4388 6072 1.4 00341  0.089 0.064  0.053
12138 13.03 0374 6248 5890 10 00340 _ 0.086 0.056  0.058
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IV. COMMENTS

In the present derivation of the equations describing
drops in equilibrium with a saturated vapor, it has been
taken into account that the thermodynamic system not
only depends on the variable p, o, v, r, and T but also on
n§,...,n§ n{, .. ,ncl; n{,...,nZ; the molar number
of the gas, the liquid, and the interface, respectively.
This last dependency makes a substantial difference with
the classic derivations of the Kelvin equation [2,3]. In
the latter equation only the molar number of the liquid
phase was taken into account. The inclusion of the molar
number of each phase as relevant variables of the system
results in Eqgs. (6) and (7). The last equation gives the va-
por pressure of a mixture corresponding to a plane sur-
face. This equation is similar to that found before by
Wilson and reported by Rowlinson [8]. It also must be
mentioned that in all the previous derivations of the Kel-
vin equation [2,3], the expression of the vapor pressure of
a mixture for a plane surface [Eq. (7)] was not explicitly
given because from the very beginning, the dependency
on the variables n§,...,n& n!, ... ,n5;ng, ..., n? was
removed.

In Table I molecular dynamics data are presented [6].
These data were used to evaluate Eqgs. (11) and (9). The
approximation done to the chemical potential by using
Eq. (5) shows itself to be a poor approximation for the
smallest droplets, where the gas phase is highly
compressed. This approximation becomes acceptable at
bigger radii, and in this situation both equations predict
values of In(p*8/p% ) of the same order. At R} small,
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Eq. (9) doubles the values of (11).

Let us get to the point and discuss the essential
difference of both approaches. In the Kelvin approxima-
tion the gas phase is only considered, via the chemical
potential, by the pressure p# of the saturated vapor. The
equation does not give information about the gas density
or molar density of the gas phase as does Eq. (6). This
last equation shows that the equilibrium is only possible if
a certain amount of gas is present. This amount changes
with the radius. For the smallest radius the relation be-
tween N'/N¢€ is, on average, around 3 as is shown in the
molecular dynamics experiment done by Nijmeijer et al.
and also by the present model. At a bigger radius this re-
lation is 1. Molecular dynamics data (see Table I, last
row) and earlier experiments done by Thoma and La Mer
and Gruen (see Defay and Prigogine [2]) tested Egs. (11)
and (9). Here the equilibrium is only possible if the num-
ber of liquid and the gas particles are present in the same
proportion [Eq. (12)].

It is well known that the concentration of liquid water
in a cloud is of considerable meteorological importance
[9]. The droplet size radii distribution in a liquid-water
cloud is of importance in determining the cloud liquid-
water contents [10,11]. One approximation of this
difficult problem can be provided by the present thermo-
dynamic study. If a cloud contains droplets of such a size
that the Kelvin equation is valid, it is clear that the num-
ber of gas and the liquid particles are the same, but in the
case of the embryonic state of formation, this relation is 3
to 1, respectively.
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